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A Class of SEC-DED-DAEC Codes Derived From 
OLS Codes and Decoded With Low Latency 

Magesh. E 

Abstract—Radiation-induced soft errors are a major reliability concern for memories. To ensure that memory contents are not 
corrupted, single error correction double error detection (SEC-DED) codes are commonly used, however, in advanced technology 
nodes, soft errors frequently affect more than one memory bit. Since SEC-DED codes cannot correct multiple errors, they are often 
combined with interleaving. Interleaving, however, impacts memory design and performance and cannot always be used in small 
memories. This limitation has spurred interest in codes that can correct adjacent bit errors. In particular, several SEC-DED double 
adjacent error correction (SEC-DED-DAEC) codes have recently been proposed. Implementing DAEC has a cost as it impacts the 
decoder complexity and delay. Another issue is that most of the new SEC-DED-DAEC codes miscorrect some double nonadjacent bit 
errors. In this brief, a new class of SEC-DED-DAEC codes is derived from orthogonal latin squares codes. The new codes significantly 
reduce the decoding complexity and delay. In addition, the codes do not miscorrect any double nonadjacent bit errors. The main 
disadvantage of the new codes is that they require a larger number of parity check bits. Therefore, they can be useful when decoding 
delay or complexity is critical or when miscorrection of double nonadjacent bit errors is not acceptable. The proposed codes have been 
implemented in Hardware Description Language and compared with some of the existing SEC-DED-DAEC codes. The results confirm 
the reduction in decoder delay. 

Index Terms— Double adjacent error correction (DAEC), error correction codes, memory, orthogonal latin squares (OLS), single error 
correction double error detection (SEC-DED). 

——————————      —————————— 

1 INTRODUCTION 
 Traditionally, SEC-DED codes have been used.     
A SEC-DED code has a minimum Hamming distance of 
four and is able to correct single bit errors and detect 
double errors without miscorrection. This is important to 
avoid silent data corruption. SEC-DED codes are sufficient 
when errors affect only one bit, however, the percentage of 
soft errors affecting more than a single bit is increasing as 
technology scales. For memories implemented in 40 nm 
and below, multiple bit errors are a significant percentage 
of errors and thus SEC-DED codes alone are no longer 
sufficient to protect memories. Interleaving, places the bits 
that belong to the same logical word physically apart. As 
the errors caused by a radiation particle hit are physically 
close, this ensures that the errors affect at most one bit per 
logical word. Interleaving has an impact on the memory 
design. The routing is more complex and area and power 
consumption are increased. In addition, interleaving cannot 
always be used in small memories or register files nor can 
be practically applied to content addressable memories. 
Another alternative is to use error correction codes that can  

 

 
 
correct adjacent bits. In many cases, directly adjacent bits  
account for over 90% of the observed multiple bit errors. 
Several codes have been recently proposed to this end. For 
example, a code that can correct double and triple adjacent 
errors for words of 16 bit was presented in. In, a technique 
to design SEC-DED double adjacent error correction (SEC-
DED-DAEC) codes was introduced. 
 The extension of SEC-DED-DAEC codes to also 
detect larger burst errors has also been recently considered 
in. One issue with those SEC-DED-DAEC codes is that they 
can miscorrect some double nonadjacent bit errors. The 
reduction of the miscorrection probability has been 
considered. In the algorithm tries to minimize the number 
of 4 cycles. In it was shown that miscorrection can be 
avoided for the most common error patterns and in some 
cases for all patterns at the cost of adding additional parity 
check bits. Another issue with SEC-DED-DAEC codes is 
that their decoding complexity and latency are larger than 
those of SEC-DED codes. This limits their use when speed 
is a critical factor. The main limitation for these codes is that 
they require a number of parity check bits equal to the 
number of data bits. The use of more advanced codes such 
as difference set and orthogonal latin squares (OLS) codes 
to correct adjacent errors has also been considered. Those 
codes are one-step majority logic decodable (OS-MLD) and 
therefore, can be decoded with low latency. They also 
support the correction of multiple nonadjacent bit errors, a 
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protection level that may be excessive in some memory 
applications. 
 In this brief, a new class of SEC-DED-DAEC codes 
is presented. The proposed codes are derived from OLS 
codes. They require fewer parity check bits than double 
error correction (DEC) OLS codes and are simpler to 
decode. Compared with existing SEC-DED-DAEC codes, 
the new codes have two main advantages: first, there are no 
miscorrections for double nonadjacent errors and second, 
the decoding is much simpler and faster. The main 
drawback for the proposed codes is that they require more 
parity check bits than existing SEC-DED-DAEC codes. 
Therefore, the proposed code is critical or miscorrections 
cannot be tolerated. 

2 OLS CODES 
 OLS codes were introduced decades ago to protect 
memories and have recently been proposed to protect 
caches and interconnect. 
 The block sizes for OLS codes are k = m2 data bits 
and 2tm parity bits. Where t is the number of errors that the 
code can correct and m is an integer. For memories, the 
word sizes are typically a power of two and therefore m is 
commonly also power of two. The main advantages of OLS 
codes are that their decoding is simple and fast. This is 
because, as mentioned in the introduction, OLS codes can 
be decoded using OS-MLD. In OS-MLD, each bit is 
decoded by simply taking the majority value on the set of 
the recomputed parity check equations in which it 
participates. This is shown in Fig. 1 for a given data bit di. 
The idea behind OS-MLD is that when an error occurs in bit 
di, the recomputed parity checks in which it participates 
will take a value of one unless there are errors in other bits. 
 Therefore, a majority of ones in those recomputed 
checks is an indication that the bit is in error and therefore 
needs to be corrected. If the code is such that two bits share 
at most one parity check, then t−1 errors on other bits will 
not affect the majority of the 2t vote and therefore, the error 
will be corrected. Only a few codes have this property and 
can be decoded using OS-MLD. This is the case for 
difference set codes and for OLS codes, as mentioned in the 
introduction. 
 More formally, the construction of OLS codes is 
such that: 
1) each data bit participates in exactly 2t parity check bits; 
2) each other data bit participates in at most one of those 
parity check bits. 

 

 
 

Fig.1. Illustration of OS – MLD decoding for OLS codes. 
 
 Therefore, for a number of errors t or smaller, 
when one error affects a given bit, the remaining t − 1 
errors can, in the worst case affect t − 1 check bits on which 
that bit participates. Therefore, still a majority of t + 1 will 
trigger the correction on the erroneous bit. Conversely, 
when a given bit is correct, t errors on other bits will not 
cause miscorrection as a majority of t + 1 is needed. As 
shown in Fig. 1, the use of OS-MLD enables a simple and 
fast decoding that is attractive to protect memories when 
decoding latency is critical. 
 As mentioned in the introduction, the proposed 
codes are derived from DEC OLS codes. These are block 
linear codes that are defined by  their  parity  generating  G  
and  parity  check  H  matrixes. The parity check matrix is 
used to detect errors by computing the syndrome s that is 
obtained by multiplying the stored word by the H matrix. 
The parity check matrix H for a DEC OLS code with k = m2 
is constructed as follows: 
 

𝐻 = �

   𝑀1
  𝑀2
  𝑀3
  𝑀4

𝐼4𝑚� 

 
where I4m is the identity matrix of size 4m and M1, M2, M3, 
M4 are matrices with size m × m2 derived from OLS of size  
m × m. The weight or the number of ones, of all the 
columns, in the Mi matrices must be one. Therefore, the first 
k = m2 columns in H have a number of ones equal to 2t (four 
for DEC codes). In addition, any pair of columns has at 
most a position with a one in common. 
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Fig.2. Parity check matrix H for the OLS code with K = 16 and t = 2.

As an example, the H matrix for a code with k = m2 = 16 
data bits and 2tm = 16 parity bits that can correct double 
errors is shown in Fig. 2. 

3 SEC – DED – DAEC CODES 
 The proposed SEC – DED – DAEC codes are 
derived from DEC OLS codes. Taking the parity check 
matrix as a starting point, the first step is to remove the m 
parity check bits that correspond to one of the Mi matrices.  
 As an example, consider removing the M1 matrix 
from the matrix in Fig. 2 as shown in Fig. 3. The data bits 
that participated in each of the removed parity check 
equations will not share any parity check in the reduced 
matrix. This is a direct consequence from the property of 
OLS codes that any two data bits share at most one parity 
check bit. This can be clearly observed in Fig. 2. In addition, 
those groups of m bits are marked as g1, g2, g3, and g4 in   
Fig. 3. For example, the first four data bits share the first 
parity check bit in the M1 matrix and form the first group 
g1. It can be observed that they do not share any other 
parity check bits. Therefore, when M1 is removed they do 
not share any parity check bit. The same occurs for the 
other groups of bits 5–8 (g2), 9–12 (g3), and 13–16 (g4). In the 
reduced matrix, each data bit participates in three parity 
checks. Therefore, if a majority vote is used to decode the 
bits; single and double errors can be corrected.  
 However, double errors can also cause 
miscorrections on other bits. Therefore, the modified 
matrix, when a majority vote is used, is only effective in 
correcting single errors. However, let us consider that 
instead of a majority vote, the logical AND of the three 
parity checks is used. In Fig. 4, this is shown for the first 
two data bits where the si values correspond to bits of the 

syndrome vector obtained by multi-plying the word by the 
H matrix. Single errors on data bits will also be corrected. 
Double errors affecting data bits will also be corrected as 
long as the data bits do not share any parity check bit. The 
two modifications can now be linked together by noting 
that errors that affect bits in one group of bits that share a 
parity check bit in M1 will now be corrected. For example, 
an adjacent error in bits 1 and 2 will cause the recomputed 
parity checks 1, 2, 5, 6, 9, and 10 to give a value of one. The 
ones on parity checks 1, 5, and 9 will trigger a correction on 
bit 1 while the ones on parity checks 2, 6, and 10 will trigger 
a correction on bit 2. This is clearly observed in Fig. 4. In 
this case, the recomputed parity checks are denoted as si to 
make clear that they are in fact bits from the syndrome. 
However, some double adjacent errors may affect bits on 
different groups. 
  For example, an error on bits 8 and 9 affects a bit 
in g2 and another in g3. These bits share parity check bit 7 
and therefore, will not be corrected as that recomputed 
parity bit will take a value of zero in the syndrome as it has 
two bits in error. This effect can be avoided by carefully 
placing the bits in the memory. For example, the bits within 
each group can be reordered to ensure that the ones at the 
borders does not share any parity check bit with the 
adjacent bit on the other group. Another issue that can 
occur is that a double adjacent error affects two parity bits 
and the error is confused with a double nonadjacent error. 
For example, an error on parity check bits 4 and 5 produces 
the same syndrome as an error that affects data bit 16 and 
parity check bit 11. This can lead to silent data corruption 
leaving an error on data bit 16 undetected. However, this 
issue can also be solved by carefully placing the bits into 
the memory.  
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Fig.3. Reduced parity check matrix H after removal of M1. 

 
 

 
 
Fig.4. Illustration of the SEC – DED - DAEC decoder for 
data bits 1 and 2. 
 
The proposed bit placement is as follows:  

1) Ensure that the bits at the borders of the groups do 
not share any parity check bits and 

2) Interleave the parity check bits with the data bits 
so that no double adjacent error affects two parity 
bits.  

 An example of this bit placement for the code with 
k = 16 is shown in Fig.5. The parity bits are marked in the 
figure and obviously, they can only be placed such that the 
adjacent columns do not participate in the parity bit. With 
this bit placement, all double adjacent errors affect at least a 
data bit and that data bit is corrected. 
 In addition, for nonadjacent errors that affect two 
bits, if any bit is corrected it means that the error is 
correctable. When the error affects two data bits, either they 
are both corrected or there is no correction. This enables a 
simple method to detect uncorrectable errors. The proposed 
scheme to detect the uncorrectable errors is shown in Fig. 6. 
It is based on detecting a nonzero even number of ones in 
the syndrome that can only be caused by a multiple bit 
error and checking if any correction has been made.  

 

 
 
Fig.5. Reduced parity check matrix H after the removal of 
M1 with the proposed bit placement. 
 
The proposed scheme can be summarized as follows: 

1) Reduce H matrix of the DEC OLS code by 
eliminating M1; 

2) Place the bits in the groups of m bits g1, g2,..., 
gm such that the bits at the borders of the 
groups do not share any parity check; 

3) Interleave  the  parity  bits  with  the  data  bits  
such  that  two adjacent bits never participate 
in the same parity bit; 

4) Instead   of   majority   voting,   decode   based   
on   unanimity to correct errors; 

5) Implement the circuit of Fig.6 to detect 
uncorrectable errors. 

 This scheme can correct all double adjacent errors 
that affect data bits and detect all non-correctable double 
errors. Therefore, the derived codes are SEC-DED-DAEC 
with no miscorrection. In addition, some double 
nonadjacent errors are also corrected and the fraction of 
these errors that can be corrected grows with the block size. 
The parameters of the derived codes for the block sizes that 
are commonly of interest for memory protection. It can be 
observed that the number of required parity check bits is  
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significantly higher than traditional SEC-DED-DAEC codes 
but this is the price to pay for faster decoding and the 
absence of miscorrections. For example, for k = 64 a       
SEC-DED-DAEC with no miscorrection required 12 bit 
compared with the 24 of the proposed codes. In that case, 
the main benefit of the new codes is the simple and fast 
decoding. 

 
Fig.6. Detection of double uncorrectable errors in the 
proposed scheme. 
 
4 EVALUATION 

 The proposed SEC-DED- DAEC extended codes 
have been implemented in MATLAB where their error 
correction capabilities were validated for single and 
double adjacent errors. As the number of combinations 
of single and double adjacent errors is small (2n − 1), 
these were tested exhaustively. For the nonadjacent 
double errors,    100 000 combinations were randomly 
generated and tested to ensure that the errors were 
corrected or detected as uncorrectable. The results 
confirm the theoretical analysis in that the codes are 
SEC-DED-DAEC with no miscorrection.  
 The encoders and decoders have also been 
implemented in Hardware Description Language (HDL). 
The synthesizer is configured to optimize the delay. 
Therefore, the results provide the lowest delay that can 
be achieved. The reported circuit area could be reduced 
at the expense of increasing the delay.  

 The area and delay results only for the encoders and 
decoders are presented in Tables 1 and 2. As expected, 
the decoders for the proposed codes are simpler and 
faster than those of existing SEC-DED-DAEC codes. In 
particular, the SEC-DED-DAEC codes for k = 16 and for  
k = 64 that avoid miscorrections for double nonadjacent 
errors that are separated up to a distance of five are used 
for comparison. The results show that the decoder area is 
less than one half of that required by the codes in and 
the delay is also greatly reduced (45% and 50% for k = 16  

TABLE 1 

AREA ESTIMATES (IN µM2) 
 Proposed codes SEC-DED-DAEC 
k n-k Encoder Decoder n-k Encoder Decoder 

16 12 158 457 7 190 1,098 
64 24 831 1,976 9 805 4,369 
256 48 3,687 6,927 - - - 

TABLE 2 

DELAY ESTIMATES (IN NANOSECONDS) 
 Proposed codes SEC-DED-DAEC 
k n-k Encoder Decoder n-k Encoder Decoder 

16 12 0.22 0.25 7 0.25 0.47 
64 24 0.25 0.34 9 0.33 0.69 
256 48 0.28 0.45 - - - 

 
and k = 64, respectively). The reduction in the encoder delay 
is also significant: 12% and 24%, respectively. The results 
confirm that the proposed codes are significantly faster than 
existing SEC-DED-DAEC alternatives making them 
attractive for high-speed memories like caches. They also 
avoid miscorrections for double nonadjacent errors. The 
price to pay is that the number of parity check bits needed  
(n − k) is significantly larger than for existing SEC-DED-
DAEC codes. 
 
5 CONCLUSION 
 In this brief, a new class of SEC-DED-DAEC codes 
has been presented. The codes are derived from DEC OLS 
codes and can be decoded with low latency. Another 
interesting feature is that the codes do not experience 
miscorrections when double nonadjacent error occurs. This 
is interesting to minimize silent data corruption. The codes 
can also correct some nonadjacent double errors. Compared 
with existing SEC-DED-DAEC codes, they require a larger 
number of parity check bits; therefore, they are attractive 
when low latency decoding is a required. The codes have 
been implemented in HDL and the resulting 
implementations compared with existing SEC-DED-DAEC 
codes to put the reductions in decoding latency in 
perspective. 
 The ideas used to derive the proposed SEC-DED-
DAEC can also be used to derive burst error correction 
codes from OLS codes that can correct multiple errors. The 
key observation is that the structure of OLS codes is such 
that the data bits can be divided in groups of m bits that do 
not share any parity check.  Therefore, any error affecting 
up to 2t −1 bits in one of these groups can be corrected. This 
can be exploited by carefully placing the data and parity 
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check bits so that, in the best case, up to 2t −1 adjacent bit 
errors can be corrected. 
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