
International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 294
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

A Class of SEC-DED-DAEC Codes Derived From
OLS Codes and Decoded With Low Latency

Magesh. E

Abstract—Radiation-induced soft errors are a major reliability concern for memories. To ensure that memory contents are not
corrupted, single error correction double error detection (SEC-DED) codes are commonly used, however, in advanced technology
nodes, soft errors frequently affect more than one memory bit. Since SEC-DED codes cannot correct multiple errors, they are often
combined with interleaving. Interleaving, however, impacts memory design and performance and cannot always be used in small
memories. This limitation has spurred interest in codes that can correct adjacent bit errors. In particular, several SEC-DED double
adjacent error correction (SEC-DED-DAEC) codes have recently been proposed. Implementing DAEC has a cost as it impacts the
decoder complexity and delay. Another issue is that most of the new SEC-DED-DAEC codes miscorrect some double nonadjacent bit
errors. In this brief, a new class of SEC-DED-DAEC codes is derived from orthogonal latin squares codes. The new codes significantly
reduce the decoding complexity and delay. In addition, the codes do not miscorrect any double nonadjacent bit errors. The main
disadvantage of the new codes is that they require a larger number of parity check bits. Therefore, they can be useful when decoding
delay or complexity is critical or when miscorrection of double nonadjacent bit errors is not acceptable. The proposed codes have been
implemented in Hardware Description Language and compared with some of the existing SEC-DED-DAEC codes. The results confirm
the reduction in decoder delay.

Index Terms— Double adjacent error correction (DAEC), error correction codes, memory, orthogonal latin squares (OLS), single error
correction double error detection (SEC-DED).

—————————— ——————————

1 INTRODUCTION
 Traditionally, SEC-DED codes have been used.
A SEC-DED code has a minimum Hamming distance of
four and is able to correct single bit errors and detect
double errors without miscorrection. This is important to
avoid silent data corruption. SEC-DED codes are sufficient
when errors affect only one bit, however, the percentage of
soft errors affecting more than a single bit is increasing as
technology scales. For memories implemented in 40 nm
and below, multiple bit errors are a significant percentage
of errors and thus SEC-DED codes alone are no longer
sufficient to protect memories. Interleaving, places the bits
that belong to the same logical word physically apart. As
the errors caused by a radiation particle hit are physically
close, this ensures that the errors affect at most one bit per
logical word. Interleaving has an impact on the memory
design. The routing is more complex and area and power
consumption are increased. In addition, interleaving cannot
always be used in small memories or register files nor can
be practically applied to content addressable memories.
Another alternative is to use error correction codes that can

correct adjacent bits. In many cases, directly adjacent bits
account for over 90% of the observed multiple bit errors.
Several codes have been recently proposed to this end. For
example, a code that can correct double and triple adjacent
errors for words of 16 bit was presented in. In, a technique
to design SEC-DED double adjacent error correction (SEC-
DED-DAEC) codes was introduced.
 The extension of SEC-DED-DAEC codes to also
detect larger burst errors has also been recently considered
in. One issue with those SEC-DED-DAEC codes is that they
can miscorrect some double nonadjacent bit errors. The
reduction of the miscorrection probability has been
considered. In the algorithm tries to minimize the number
of 4 cycles. In it was shown that miscorrection can be
avoided for the most common error patterns and in some
cases for all patterns at the cost of adding additional parity
check bits. Another issue with SEC-DED-DAEC codes is
that their decoding complexity and latency are larger than
those of SEC-DED codes. This limits their use when speed
is a critical factor. The main limitation for these codes is that
they require a number of parity check bits equal to the
number of data bits. The use of more advanced codes such
as difference set and orthogonal latin squares (OLS) codes
to correct adjacent errors has also been considered. Those
codes are one-step majority logic decodable (OS-MLD) and
therefore, can be decoded with low latency. They also
support the correction of multiple nonadjacent bit errors, a

————————————————

MAGESH. E is currently pursuing master degree program in
Applied Electronics in Anna University, Chennai, India,
PH-09489958255. E-mail: magesh.e001@mail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 295
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

protection level that may be excessive in some memory
applications.
 In this brief, a new class of SEC-DED-DAEC codes
is presented. The proposed codes are derived from OLS
codes. They require fewer parity check bits than double
error correction (DEC) OLS codes and are simpler to
decode. Compared with existing SEC-DED-DAEC codes,
the new codes have two main advantages: first, there are no
miscorrections for double nonadjacent errors and second,
the decoding is much simpler and faster. The main
drawback for the proposed codes is that they require more
parity check bits than existing SEC-DED-DAEC codes.
Therefore, the proposed code is critical or miscorrections
cannot be tolerated.

2 OLS CODES
 OLS codes were introduced decades ago to protect
memories and have recently been proposed to protect
caches and interconnect.
 The block sizes for OLS codes are k = m2 data bits
and 2tm parity bits. Where t is the number of errors that the
code can correct and m is an integer. For memories, the
word sizes are typically a power of two and therefore m is
commonly also power of two. The main advantages of OLS
codes are that their decoding is simple and fast. This is
because, as mentioned in the introduction, OLS codes can
be decoded using OS-MLD. In OS-MLD, each bit is
decoded by simply taking the majority value on the set of
the recomputed parity check equations in which it
participates. This is shown in Fig. 1 for a given data bit di.
The idea behind OS-MLD is that when an error occurs in bit
di, the recomputed parity checks in which it participates
will take a value of one unless there are errors in other bits.
 Therefore, a majority of ones in those recomputed
checks is an indication that the bit is in error and therefore
needs to be corrected. If the code is such that two bits share
at most one parity check, then t−1 errors on other bits will
not affect the majority of the 2t vote and therefore, the error
will be corrected. Only a few codes have this property and
can be decoded using OS-MLD. This is the case for
difference set codes and for OLS codes, as mentioned in the
introduction.
 More formally, the construction of OLS codes is
such that:
1) each data bit participates in exactly 2t parity check bits;
2) each other data bit participates in at most one of those
parity check bits.

Fig.1. Illustration of OS – MLD decoding for OLS codes.

 Therefore, for a number of errors t or smaller,
when one error affects a given bit, the remaining t − 1
errors can, in the worst case affect t − 1 check bits on which
that bit participates. Therefore, still a majority of t + 1 will
trigger the correction on the erroneous bit. Conversely,
when a given bit is correct, t errors on other bits will not
cause miscorrection as a majority of t + 1 is needed. As
shown in Fig. 1, the use of OS-MLD enables a simple and
fast decoding that is attractive to protect memories when
decoding latency is critical.
 As mentioned in the introduction, the proposed
codes are derived from DEC OLS codes. These are block
linear codes that are defined by their parity generating G
and parity check H matrixes. The parity check matrix is
used to detect errors by computing the syndrome s that is
obtained by multiplying the stored word by the H matrix.
The parity check matrix H for a DEC OLS code with k = m2
is constructed as follows:

𝐻 = �

 𝑀1
 𝑀2
 𝑀3
 𝑀4

𝐼4𝑚�

where I4m is the identity matrix of size 4m and M1, M2, M3,
M4 are matrices with size m × m2 derived from OLS of size
m × m. The weight or the number of ones, of all the
columns, in the Mi matrices must be one. Therefore, the first
k = m2 columns in H have a number of ones equal to 2t (four
for DEC codes). In addition, any pair of columns has at
most a position with a one in common.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 296
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig.2. Parity check matrix H for the OLS code with K = 16 and t = 2.

As an example, the H matrix for a code with k = m2 = 16
data bits and 2tm = 16 parity bits that can correct double
errors is shown in Fig. 2.

3 SEC – DED – DAEC CODES
 The proposed SEC – DED – DAEC codes are
derived from DEC OLS codes. Taking the parity check
matrix as a starting point, the first step is to remove the m
parity check bits that correspond to one of the Mi matrices.
 As an example, consider removing the M1 matrix
from the matrix in Fig. 2 as shown in Fig. 3. The data bits
that participated in each of the removed parity check
equations will not share any parity check in the reduced
matrix. This is a direct consequence from the property of
OLS codes that any two data bits share at most one parity
check bit. This can be clearly observed in Fig. 2. In addition,
those groups of m bits are marked as g1, g2, g3, and g4 in
Fig. 3. For example, the first four data bits share the first
parity check bit in the M1 matrix and form the first group
g1. It can be observed that they do not share any other
parity check bits. Therefore, when M1 is removed they do
not share any parity check bit. The same occurs for the
other groups of bits 5–8 (g2), 9–12 (g3), and 13–16 (g4). In the
reduced matrix, each data bit participates in three parity
checks. Therefore, if a majority vote is used to decode the
bits; single and double errors can be corrected.
 However, double errors can also cause
miscorrections on other bits. Therefore, the modified
matrix, when a majority vote is used, is only effective in
correcting single errors. However, let us consider that
instead of a majority vote, the logical AND of the three
parity checks is used. In Fig. 4, this is shown for the first
two data bits where the si values correspond to bits of the

syndrome vector obtained by multi-plying the word by the
H matrix. Single errors on data bits will also be corrected.
Double errors affecting data bits will also be corrected as
long as the data bits do not share any parity check bit. The
two modifications can now be linked together by noting
that errors that affect bits in one group of bits that share a
parity check bit in M1 will now be corrected. For example,
an adjacent error in bits 1 and 2 will cause the recomputed
parity checks 1, 2, 5, 6, 9, and 10 to give a value of one. The
ones on parity checks 1, 5, and 9 will trigger a correction on
bit 1 while the ones on parity checks 2, 6, and 10 will trigger
a correction on bit 2. This is clearly observed in Fig. 4. In
this case, the recomputed parity checks are denoted as si to
make clear that they are in fact bits from the syndrome.
However, some double adjacent errors may affect bits on
different groups.
 For example, an error on bits 8 and 9 affects a bit
in g2 and another in g3. These bits share parity check bit 7
and therefore, will not be corrected as that recomputed
parity bit will take a value of zero in the syndrome as it has
two bits in error. This effect can be avoided by carefully
placing the bits in the memory. For example, the bits within
each group can be reordered to ensure that the ones at the
borders does not share any parity check bit with the
adjacent bit on the other group. Another issue that can
occur is that a double adjacent error affects two parity bits
and the error is confused with a double nonadjacent error.
For example, an error on parity check bits 4 and 5 produces
the same syndrome as an error that affects data bit 16 and
parity check bit 11. This can lead to silent data corruption
leaving an error on data bit 16 undetected. However, this
issue can also be solved by carefully placing the bits into
the memory.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 297
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig.3. Reduced parity check matrix H after removal of M1.

Fig.4. Illustration of the SEC – DED - DAEC decoder for
data bits 1 and 2.

The proposed bit placement is as follows:

1) Ensure that the bits at the borders of the groups do
not share any parity check bits and

2) Interleave the parity check bits with the data bits
so that no double adjacent error affects two parity
bits.

 An example of this bit placement for the code with
k = 16 is shown in Fig.5. The parity bits are marked in the
figure and obviously, they can only be placed such that the
adjacent columns do not participate in the parity bit. With
this bit placement, all double adjacent errors affect at least a
data bit and that data bit is corrected.
 In addition, for nonadjacent errors that affect two
bits, if any bit is corrected it means that the error is
correctable. When the error affects two data bits, either they
are both corrected or there is no correction. This enables a
simple method to detect uncorrectable errors. The proposed
scheme to detect the uncorrectable errors is shown in Fig. 6.
It is based on detecting a nonzero even number of ones in
the syndrome that can only be caused by a multiple bit
error and checking if any correction has been made.

Fig.5. Reduced parity check matrix H after the removal of
M1 with the proposed bit placement.

The proposed scheme can be summarized as follows:

1) Reduce H matrix of the DEC OLS code by
eliminating M1;

2) Place the bits in the groups of m bits g1, g2,...,
gm such that the bits at the borders of the
groups do not share any parity check;

3) Interleave the parity bits with the data bits
such that two adjacent bits never participate
in the same parity bit;

4) Instead of majority voting, decode based
on unanimity to correct errors;

5) Implement the circuit of Fig.6 to detect
uncorrectable errors.

 This scheme can correct all double adjacent errors
that affect data bits and detect all non-correctable double
errors. Therefore, the derived codes are SEC-DED-DAEC
with no miscorrection. In addition, some double
nonadjacent errors are also corrected and the fraction of
these errors that can be corrected grows with the block size.
The parameters of the derived codes for the block sizes that
are commonly of interest for memory protection. It can be
observed that the number of required parity check bits is

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 298
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

significantly higher than traditional SEC-DED-DAEC codes
but this is the price to pay for faster decoding and the
absence of miscorrections. For example, for k = 64 a
SEC-DED-DAEC with no miscorrection required 12 bit
compared with the 24 of the proposed codes. In that case,
the main benefit of the new codes is the simple and fast
decoding.

Fig.6. Detection of double uncorrectable errors in the
proposed scheme.

4 EVALUATION

 The proposed SEC-DED- DAEC extended codes
have been implemented in MATLAB where their error
correction capabilities were validated for single and
double adjacent errors. As the number of combinations
of single and double adjacent errors is small (2n − 1),
these were tested exhaustively. For the nonadjacent
double errors, 100 000 combinations were randomly
generated and tested to ensure that the errors were
corrected or detected as uncorrectable. The results
confirm the theoretical analysis in that the codes are
SEC-DED-DAEC with no miscorrection.
 The encoders and decoders have also been
implemented in Hardware Description Language (HDL).
The synthesizer is configured to optimize the delay.
Therefore, the results provide the lowest delay that can
be achieved. The reported circuit area could be reduced
at the expense of increasing the delay.

 The area and delay results only for the encoders and
decoders are presented in Tables 1 and 2. As expected,
the decoders for the proposed codes are simpler and
faster than those of existing SEC-DED-DAEC codes. In
particular, the SEC-DED-DAEC codes for k = 16 and for
k = 64 that avoid miscorrections for double nonadjacent
errors that are separated up to a distance of five are used
for comparison. The results show that the decoder area is
less than one half of that required by the codes in and
the delay is also greatly reduced (45% and 50% for k = 16

TABLE 1

AREA ESTIMATES (IN µM2)
 Proposed codes SEC-DED-DAEC
k n-k Encoder Decoder n-k Encoder Decoder

16 12 158 457 7 190 1,098
64 24 831 1,976 9 805 4,369
256 48 3,687 6,927 - - -

TABLE 2

DELAY ESTIMATES (IN NANOSECONDS)
 Proposed codes SEC-DED-DAEC
k n-k Encoder Decoder n-k Encoder Decoder

16 12 0.22 0.25 7 0.25 0.47
64 24 0.25 0.34 9 0.33 0.69
256 48 0.28 0.45 - - -

and k = 64, respectively). The reduction in the encoder delay
is also significant: 12% and 24%, respectively. The results
confirm that the proposed codes are significantly faster than
existing SEC-DED-DAEC alternatives making them
attractive for high-speed memories like caches. They also
avoid miscorrections for double nonadjacent errors. The
price to pay is that the number of parity check bits needed
(n − k) is significantly larger than for existing SEC-DED-
DAEC codes.

5 CONCLUSION
 In this brief, a new class of SEC-DED-DAEC codes
has been presented. The codes are derived from DEC OLS
codes and can be decoded with low latency. Another
interesting feature is that the codes do not experience
miscorrections when double nonadjacent error occurs. This
is interesting to minimize silent data corruption. The codes
can also correct some nonadjacent double errors. Compared
with existing SEC-DED-DAEC codes, they require a larger
number of parity check bits; therefore, they are attractive
when low latency decoding is a required. The codes have
been implemented in HDL and the resulting
implementations compared with existing SEC-DED-DAEC
codes to put the reductions in decoding latency in
perspective.
 The ideas used to derive the proposed SEC-DED-
DAEC can also be used to derive burst error correction
codes from OLS codes that can correct multiple errors. The
key observation is that the structure of OLS codes is such
that the data bits can be divided in groups of m bits that do
not share any parity check. Therefore, any error affecting
up to 2t −1 bits in one of these groups can be corrected. This
can be exploited by carefully placing the data and parity

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 4, April-2016 299
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

check bits so that, in the best case, up to 2t −1 adjacent bit
errors can be corrected.

References

[1] A. Neale and M. Sachdev, “A new SEC-DED error
correction code subclass for adjacent MBU tolerance in
embedded memory,” IEEE Trans. Device Mater. Rel., vol.
13, no. 1, pp. 223–230, Mar. 2013.

[2] A. Dutta, “Low cost adjacent double error correcting code
with complete elimination of miscorrection within a
dispersion window for multiple bit upset tolerant
memory,” in Proc. IEEE/IFIP 20th Int. Conf. VLSI SoC,
2012, pp. 287–290.

[3] P. Reviriego, S. Pontarelli, J. A. Maestro and M. Ottavi,
“Low- cost single error correction multiple adjacent error
correction codes,” Electron. Lett., vol. 48, no. 23, pp. 1470–
1472, Nov. 2012.

[4] S. Baeg, S. Wen, and R. Wong, “Minimizing soft errors in
TCAM devices: A probabilistic approach to determining
scrubbing intervals,” IEEE Trans. Circuits Syst. II, Exp.
Briefs, vol. 57, no. 4, pp. 814–822, Apr. 2010.

[5] X. She, N. Li, and D. W. Jensen, “SEU tolerant memory
using error correction code,” IEEE Trans. Nucl. Sci., vol. 59,
no. 1, pp. 205–210, Feb. 2012.

[6] P. Reviriego, J. A. Maestro, S. Baeg, S. Wen, and R. Wong,
“Protection of memories suffering MCUs through the
selection of the optimal inter- leaving distance,” IEEE Trans.
Nucl. Sci., vol. 57, no. 4, pp. 2124–2128, Aug. 2010.

[7] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba,
“Impact of scaling on neutron-induced soft error in SRAMs
from a 250 nm to a 22 nm design rule,” IEEE Trans. Electron
Devices, vol. 57, no. 7, pp. 1527–1538, Jul. 2010.

[8] R. C. Baumann, “Soft errors in advanced computer
systems,” IEEE Des.Test. Comput., vol. 22, no. 3, pp. 258–
266, May/Jun. 2005.

IJSER

http://www.ijser.org/

	1 Introduction
	2 OLS CODES
	3 SEC – DED – DAEC CODES
	4 EVALUATION
	5 CONCLUSION

